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We present an approach for model reduction of nonlinear dynamical systems based on proper orthogonal
decomposition �POD�. Our method, derived from the density-matrix renormalization group, provides a signifi-
cant reduction in computational effort for the calculation of the reduced system, compared to a POD. The
efficiency of the algorithm is tested on the one-dimensional Burgers equations and a one-dimensional equation
of the Fisher type as nonlinear model systems.
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I. INTRODUCTION

Nonlinear dynamical systems arise in many fields of
physics, e.g., turbulence �1�, mathematics, and biology �2�.
They often require a significant high number of degrees of
freedom �DOF� for simulation with suitable accuracy. For a
large class of systems the solutions are regular, nevertheless
the influence of the nonlinearity is essential. Here model re-
duction �MR� can lead to an efficient description, if the dy-
namics is effectively confined to a lower dimensional attrac-
tor in phase space.

The aim of this work is to develop an algorithm that can
find a reduced model for a given system, usually derived
from a partial differential equation.

One method to obtain such a reduced description is the
so-called proper orthogonal decomposition �1,3� �POD�. It is
obtained by calculating the eigenvectors of the spatial cova-
riance matrix of the field over the phase space, typically by
nusing a empirical spatial covariance matrix from a number
of realization of the dynamic evolution. The method itself is
linear in that the phase space is reduced to a subspace �in
which the relevant attractor has to be embedded�. Neverthe-
less it accounts for the nonlinearity and gives the “optimal”
linear reduction possible. By definition the POD requires a
simulation of the full, unreduced system and a diagonaliza-
tion of a symmetric matrix of similar size. While the latter
can be circumvented by the method of snapshots of Sirovich
�1�, the simulation in unavoidable.

Within our approach, we try to calculate “approximate”
POD modes without simulating the full, unreduced system.
This is achieved by following concepts from density matrix
renormalization. Effectively, we adapt a system of already
low dimensionality, to reproduce the full dynamics opti-
mally. Consequently, all calculations are performed on low-
dimensional systems. In exchange, several calculation steps
have to be performed, but their number is proportional to the
size of the full system of interest. Practically this is one
possible way to study large dynamical systems, although
within this work we are still restricted to spatially one-
dimensional systems. Beside from possible benefits for the
efficiency, an interesting question is whether it is possible to
reconstruct dynamic behavior of a system from the knowl-
edge of subsystems only.

This paper is organized as follows. First, we introduce the
formulation of the equations defining the dynamical system.
This includes the use of higher order tensors to describe the
nonlinear part of the generator of the time evolution. Further,
the discretization of the three model equations, namely the
linear diffusion equation, the Burgers equation, and a nonlin-
ear diffusion equation, is presented. Then the type of or-
thogonal projection, which is used in this work, is introduced
and the basic concept of the proper orthogonal decomposi-
tion is recapitulated. After a brief outline of the single par-
ticle density-matrix renormalization group approach, the
method devised in this paper is presented. The numerical
results, including a comparison of our method with standard
techniques, are given consecutively. This is followed by a
short discussion of our approach and the conclusions. The
Appendix finally contains an analysis of the optimal reduc-
tion for the linear case.

II. THE PROBLEM

A. The dynamical system

We consider discretized versions of nonlinear evolution
equations of the form

�t�i = „G����…i = Lij� j + Qijk� j�k + Kijkl� j�k�l. �1�

Here � is the field, G��� is the nonlinear generator of evo-
lution, and we make use of the sum convention. The contri-
butions L, Q, and K are the linear, the quadratic, and the
cubic part, respectively, of the generator of evolution. Higher
order terms can also be considered, but the number of non-
linear terms should be finite for our approach. Note that Q
and K are third and fourth order tensors and have the corre-
sponding transformation properties. The dynamical system
described in Eq. �1� is typically derived from a partial differ-
ential equation. The spatial discretization is then done by
finite differences or equivalently by linear finite elements.
The temporal discretization is done by the simple explicit
Euler method, although this choice is not relevant for our
method. Here, we restrict ourselves to the spatially one-
dimensional case. In the following we exemplify our ap-
proach on simple toy problems.*URL: http://www.physik.uni-bielefeld.de/theory/cm/
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B. The linear diffusion equation

The diffusion equation describes diffusive transport of a
scalar field, e.g., heat transport, in a medium. For homo-
geneous media it is given by

�

�t
��x,t� = d���x,t�, x � �0,1� , �2�

with the diffusion constant d. Spatial discretization of the
interval �0, 1� with N nodes gives for the discrete Laplace
operator with second order accuracy in �x the following N
�N matrix:

�N =
1

�x2�
− 1 1

1 − 2 1

1 � �

� − 2 1

1 − 1
� . �3�

Here homogeneous Neumann conditions are assumed for x
=0 and x=1, and the spatial discretization step size is �x
= 1

N . The explicit Euler method gives for the discrete time
evolution with time step size ht the following equation:

�̃�x̃,tn+1� = �̃�x̃,tn� + dht�N�̃�x,tn
˜ � , �4�

where �̃ and x̃ are N-dimensional vectors, indicated by ·̃.
Thus the linear part L in Eq. �1� is given by

L = dht�N. �5�

The nonlinear contributions in Eq. �1� vanish for the linear
diffusion equation.

C. The Burgers equation

As one nonlinear example we consider the Burgers equa-
tion �5�. It describes a diffusive as well as a convective trans-
port of a scalar field � and is given by

�

�t
� = d�� + ��� � �� . �6�

This equation is similar to the linear diffusion equation �2�
but with an additional term ���� �� describing the convec-
tion. This term is quadratic in the field � and can be dis-
cretized in the form of Q in Eq. �1�. For one space dimen-
sion, the � operator is simply the spatial derivative. This can
be discretized with second order accuracy in �x as �6�

Dx,N =
1

�x�
− 1 1

− 1 0 1

− 1 � �

� 0 1

− 1 1
� . �7�

The term ��� � is also known as the convective derivative.
In one dimensions the discretization is given by multiplying

the rows of Dx,N with the components of �̃,

�� � �N,i,j = �̃iDx,N,i,j; �8�

here i , j indicate the component of the matrix and/or vector.
Choosing

Qi,j,k ª �Dx,N,j,k�ij �9�

gives a discretization of the convection term, as defined in
Eq. �8�,

�
j,k

Qi,j,k� j
˜ �k

˜ = ��
j,k

Dx,N,j,k�ij� j
˜ �k

˜

= ��
k

�i
˜ Dx,N,i,k�k

˜ ��� � �N�̃ . �10�

D. Nonlinear diffusion

We consider here a diffusion equation with a nonlinearity
that resembles the action-potential part of the one-
dimensional FitzHugh-Nagumo �FN� �7,8� equation. In par-
ticular the dynamics is defined by

�

�t
� = �� − ��1 − ���a − �� , �11�

where a is a constant. Equation �11� has stable equilibria at
��0 and ��1 and an instable equilibrium at ��a. The
nonlinear term is cubic in the field. It can be rewritten as
−��1−���a−��=−�3+ �1+a��2−a�. Here the powers of
� are defined component wise. The cubic part −�3, e.g., is
discretized by

Ki,j,k,l = − �ij�ik�il �12�

since

�
j,k,l

�− �ij�ik�il�� j
˜ �k

˜ �l
˜ = − �i

˜ 3. �13�

Similarly, the quadratic part becomes

Qi,j,k = �1 + a��ij�ik �14�

and the linear part together with the contribution from the
diffusive term is

Li,j = dht�N,i,j − a�ij . �15�

Since we deal only with discretized fields �̃ in the following,

we drop the notation ·̃ for discrete variables.

E. The reduction

To obtain a reduced model, we will project the phase
space to a lower dimensional subspace. Thus the reduction is
linear, which simplifies the problem significantly. For non-
linear reduction see, e.g., �9,10�. For a linear projection we
only need a basis of the relevant subspace, e.g., given by the
column vectors of an N�M matrix B, where N is the dimen-
sionality of the phase space and M that of the subspace �N
�M�. We will always assume an orthonormal basis in the
following since B can always be brought to this form. This
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basis spans the range of the projection operator P, which is
defined by

P = BB†. �16�

The reduced dynamics is given by

�tP� = PLP� + P�QP�P�� + P�KP�P�P�� . �17�

One can write this equation directly for the reduced phase
space which is only M dimensional by using

�̂ = B†� , �18�

L̂ = B†LB , �19�

Q̂i,j,k = �
a,b,c

Bi,a
† Qa,b,cBb,jBc,k, �20�

K̂i,j,k,l = �
a,b,c,d

Bi,a
† Ka,b,c,dBb,jBc,kBd,l. �21�

This gives the reduced equations which are still in the form
of Eq. �1� as

�t�̂ = L̂ij�̂ j + Q̂ijk�̂ j�̂k + K̂ijkl�̂ j�̂k�̂l. �22�

While this dynamics is defined on a smaller, M-dimensional
phase space it has to be noted that the operators are now
typically dense, i.e., most entries in the tensors L, Q, and K
are nonzero. To define the reduction we have to make a
choice for the relevant degrees of freedom that span the
range of P, i.e., the orthonormal basis �ONB� B. Natural
criteria for the determination of B would be based on the
difference

E�t� = ��t� − BB†�̂�t� = �1 − P���t� , �23�

e.g., the L2-error

E�t� ª 	E�t�	2. �24�

For linear systems, as, e.g., the linear diffusion equation,
it can be shown �see the Appendix� that the projector onto
the eigenstates with lowest absolute eigenvalue of the gen-
erator of the time evolution �i.e., L in Eq. �1�� leads to a
minimal L2-error for long and short enough times. In the
long time limit this approximation becomes even arbitrary
accurate as long as the discarded eigenvalues are smaller
than zero. This can be extended to nonlinear systems using
the proper orthogonal decomposition �POD�.

III. PROPER ORTHOGONAL DECOMPOSITION

The proper orthogonal decomposition is a linear projec-
tion method which is widely used in model reduction. On
this topic an extensive literature exists. Some examples are
�1,11–14�. A short explanation of POD together with the
method of snapshots is also given in �15�. One of the advan-
tages of this method is the possibility to incorporate informa-
tion from the nonlinear dynamics to obtain a linear reduc-
tion. The basic idea is to generate sample trajectories by

simulating the dynamical system of interest. Then the spatial
two point correlation matrix C is calculated,

Ci,j ª 
��xi,t���xj,t��T. �25�

Here 
 �T denotes an average over all sample trajectories. The
eigenvectors of this symmetric matrix, which correspond to
the highest eigenvalues, span an “optimal” subspace in the
sense that the average least square truncation error

� ª 
	��x,t� − P��x,t�	2�T �26�

is minimal, see, e.g., �1,16�. The �orthonormal� basis vectors
of this subspace constitute the columns of the matrix B
which defines the projection operator P, see Eq. �16�. The
practical application in the following algorithm is simple:
Once the operators L, Q, and K are calculated and the initial
conditions are given, we can simulate the dynamics of the
field �, e.g., by Eq. �1�. For the reduced system Eq. �22� is
used instead. During the simulation the data for the covari-
ance matrix C is accumulated; if necessary several simula-
tion runs are performed using different initial conditions with
appropriate weighting. The eigenvectors of C are calculated
using standard methods �6�. Then B is constructed from
those eigenvectors corresponding to the highest eigenvalues.
The discarded eigenvalues can also provide information on
the quality of the reduction. The POD can be applied rela-
tively independent from the actual blocking method. It
should be noted that such a reduction is optimal for describ-
ing the generated dataset, but not necessarily optimal in re-
producing the underlying dynamics �17�.

IV. BLOCKING METHOD

Blocking methods were considered already earlier, e.g.,
�18�, mainly because in many problems not all spatial re-
gions are of similar interest. Our motivation is different, we
aim to decompose a calculation into more feasible subprob-
lems. In the linear case the basis B can be calculated in
principle by simply diagonalizing L. Technically this is the
same problem as determining the eigenstates of the Laplace
operator, which also describes the single quantum mechani-
cal 1D particle in a box. White �4,19,20� used this toy model
for introducing the so-called density-matrix renormalization
group �DMRG�. This approach has been then applied most
successfully to quantum many-body problems. In the follow-
ing we want to carry this analogy further. Instead of approxi-
mating the eigenvalues and/or states of a linear operator we
use a similar algorithm to obtain an approximate POD of a
nonlinear system. To this end a few modifications are neces-
sary, so we first summarize the original DMRG method.

A. Single particle DMRG

In the DMRG toy problem the system is split into blocks
of size m. For each block a block-Laplace operator is stored,
as well as the links T that define the interaction with the
neighboring sites. The assembly of the superblock Laplace
operator is pictorially presented in Fig. 1. This superblock
operator is a �2m+2�� �2m+2� matrix and has to be diago-
nalized. From the eigenstates the so-called target states 	i,
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i=1. . . �m+1� are selected, usually the low lying spectrum.
Since we have in this special case a single particle problem,
the block truncation matrix R can be calculated simply by
applying a Gram-Schmidt orthogonalization to the block part
of the target states.

Ri,j = Gram-Schmidt�	 j
i�, i = 1 . . . �M + 1�, j � Block.

�27�

For more general DMRG applications R would be calculated
by diagonalizing the density matrix of the target state. R is a
�m+1��m matrix which projects the phase space of one
system side to an effective block.

The effective block Laplacian Lef f and the effective block
link Tef f are derived as follows:

Lef f = R†LsideR, Tef f = R†Tside, �28�

where the form of Lside and Tside are depicted in Fig. 1 for the
left side. By this process effective blocks are calculated that
describe a higher number of sites, but have numerically still
m degrees of freedom.

In DMRG this “growing” of blocks is first used in an
initialization step until the superblock describes a sufficiently
large system, see Fig. 2. Then an iteration is carried out to
increase accuracy. Here only one side is grown, while the
other is replaced by an already calculated block so that the
effective size of the superblock is constant, see Fig. 3.

B. DMRG POD

Basically three modifications are necessary to obtain a
DMRG-POD algorithm.

First, instead of a diagonalization of the superblock op-
erator, a POD on the superblock system has to be performed.
This is composed of, first, a simulation of the superblock
system, as defined in Eq. �22�. Then the superblock correla-
tion matrix from the generated data has to be diagonalized.
This gives an orthonormal set of vectors which are the target
vectors in the context of DMRG.

Second, to each subblock there exist not only a linear
sub-block operator but also higher order operators, given by
third and higher order tensors, see Eq. �17�. These have to be
updated in a similar way.

Third, for the POD the initial states for the sample trajec-
tories are crucial. The initial states are defined for the full
system. They have to be projected onto the superblock sys-
tem which requires all truncation matrices explicitly.

Concerning the first point, this is no great difference,
since the POD �simulation and diagonalization of the corre-
lation matrix� returns also a orthonormal set of “relevant”
states �the POD modes� that serve as target states, as de-
scribed above.

Beside the linear operator �L in Eq. �1�� which is as-
sembled identically as the superblock operator in DMRG, the
higher order operators have to be assembled also. This is
principally possible, but complex. Here we use a simple
trick. For all our models it is sufficient to know the
component-wise squaring operator 
i,j,kª�ij�ik �and in
some cases the derivative operator which is linear and is also
assembled similar to the superblock Laplace operator�. 
 is
purely diagonal, so no links have to be stored and assembled.
The reduction with a truncation matrix R is straightforward,


̂i,j,k = �
a,b,c

Ri,a
a,b,cRb,jRc,k. �29�

From this the higher order tensors can be calculated directly,
e.g., for the Burgers equation

Q̂Burgers,i,j,k ª ��
l

�ij�ljD̂x,N,l,k = �
l


̂ j,i,lD̂x,N,l,k. �30�

For fourth and higher order operators this procedure is a bit
memory consuming. For example, for calculating �3 it is

more efficient to calculate first �tmpª�̂2=
�� and then

�̂3=�̂2�̂=
�tmp�.

−2

mxm

1

1

Lside Tside

right link T

Laplace
right Block

left Block
Laplace

−2left link T

mxm

T

T

FIG. 1. Assembly of the superblock Laplace operator.
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FIG. 2. Graphical illustration of the DMRG initialization �or
warmup� scheme.
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FIG. 3. Graphical illustration of the DMRG iteration �or sweep-
ing� scheme.
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The third point is a small disadvantage, since the projec-
tion operators all have to be stored, which is not necessary in
DMRG if only the energy values are of interest. However,
here as well as in DMRG it is possible to expand a super-
block state to a state of the original system as well as project
down a system state to the superblock if all truncation ma-
trices are stored. The down projection of the N-dimensional
state is in particular done by iteratively contracting the m
+1 outermost sites of, e.g., � with the corresponding block
truncation matrix R. Apart from the memory requirement this
is simply a bookkeeping problem.

It should be noted that only m+1 most relevant states
from the POD are used as target states. Thus only m+1 rel-
evant states of the superblock are optimized although it rep-
resents 2m+2 DOFs. This has to be considered in comparing
the results. However, the DMRG POD is nevertheless faster
than the full POD, see Sec. VI A.

To summarize: Apart from the POD itself, which is a stan-
dard technique, no fundamental changes have to be imple-
mented to obtain a DMRG-POD method from the simple toy
model DMRG. The assembly of linear operators has to be
performed in any case, only our method requires several op-
erators. The assembly of the 
 operator is even more simple,
since all links vanish. Reconstruction of full system states is
also possible in DMRG, only it is mandatory for our method
for evaluating the correct initial conditions.

V. APPLICATION

For all applications we choose a finite differencing
scheme of second order accuracy, homogeneous Neumann
conditions at the boundaries, and the explicit Euler method
for the calculations. The details are given in Sec. II, above.
The boundary conditions as well as the time integration
method can be chosen—more or less—arbitrarily. However,
higher order finite elements in the spatial discretization lead
to additional interactions between single DOFs, i.e., a form
of nonlocality and do thereby complicate the problem. For
the reduced system size always four DOFs were retained.
This is mainly for convenience and easy comparison. The
success of the method does not depend strongly on this
choice.

As explained above, we measure the quality of a reduc-
tion by the L2-error, see Eq. �24�. It has the same units as the
fields � which are not further specified. The time units are
also arbitrary. The error calculations in the following are per-
formed in a separate program which obtains the optimized
bases from the various methods as input. Thus the simulation
time do not have to coincide with the length of the POD
simulations. Further we have chosen a different random seed
for statistical initial conditions unless otherwise stated.

A. Linear diffusion

For this problem the dynamics is given by Eq. �2�. The
only nonzero contribution according to Eq. �1� is L��N.
The eigenstates of L are the sine and/or cosine or Fourier
modes whose contributions decay over time with character-
istic lifetime inversely proportional to the frequency and/or

energy. Standard DMRG can be viewed as an approximate
diagonalization method for a linear operator. Therefore it is
very effective to find the optimal reduction determined by
the eigenstates, see the Appendix, in the linear case. In con-
trast to the diagonalization, POD as well as our method de-
pends on the initial conditions for the sample trajectories
over which the averaging is carried out. Both POD ap-
proaches cannot exploit the linearity of the evolution equa-
tion. This affects the quality of the results for linear problems
compared to diagonalization-based methods. Nevertheless,
restriction to a few sample trajectories can also be an advan-
tage, since sometimes the interest lies on a certain region in
phase space. However, for the diffusion equation we choose
normally distributed initial conditions, i.e., the field �0�xi� is
normally distributed. This is then also true for the Fourier
modes. By this choice effectively the whole phase space will
be sampled for a high enough number of realizations. This is
also due to the invariance of Eq. �2� under multiplication
with a constant factor.

For the POD it is important to integrate over long enough
times. For short times the state moves in the direction of the
highest frequency modes which are decaying most rapidly.
Thus POD would give the wrong relevant modes. The POD
is in fact not a very appropriate tool to reduce the whole
phase space of the diffusion equation. In Fig. 4 the error of

the reduced fields �̂ is plotted in dependence of time. There
the time step was dt=10−3 and the diffusion constant d
=0.05. The spatial resolution was 40 lattice sites within the
interval �0,1�. In each POD step as well as for the error
calculation the ensemble average, compare with Eq. �25�, has
been averaged over 50 realizations of the initial conditions.
From this result we can state several things. First, all POD-
based methods show a remaining error in the long time limit.
Second, the initialization steps of DMRG POD give already
reasonable results. An improvement due to the iteration is
present, too. Third, our algorithm is able to compute the
optimal reduction with even higher accuracy than the full
POD. The last point is only a paradox on the first glance. The
inaccuracy of the full POD is in this case influenced from the
statistical initial conditions, in order to sample the full phase
space. Within our algorithm, much more initial conditions
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FIG. 4. �Color online� Reduced diffusion equation L2-error E�t�
for the analytical reduction �Fourier modes�, the full POD, and
DMRG POD after initialization and several iterations, statistical
initial conditions, N=40, ht=0.001, and d=0.05. The error is ex-
pressed in units of �; for the time axis arbitrary units are employed.
Note that for clarity not all data points are shown as symbols.
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are taken into account as the superblock POD is performed
repeatedly. This leads to a better statistics. In Fig. 5 we have
shown the same results but always using the same initializa-
tion for calculating all PODs �but of course not for the error
calculation�. It is clear that in this case, our method has no
advantage over the full POD anymore. On the other hand,
the results from our algorithm are not worse than that from
the full system POD, which is not clear a priori.

B. Burgers equation

The Burgers equation is given by Eq. �6�. The discretiza-
tion used here is already described above. We begin our
analysis with the choice of deterministic initial conditions for
the calculation of all PODs. In particular, it is of the form

��t = 0,xi� = e−50�xi − 1�2
, xi = 0 . . . 1. �31�

Figures 6 and 7 show the results for the L2-error of the evo-
lution. Here we have used two spatial resolutions, i.e., N
=40 and N=100 nodes. The results are very similar. In con-
trast to the previous calculations the simulation runs for the
error calculation are longer than the POD runs. The vertical
line indicates the time interval of the POD runs. Here we
have to state that the Fourier mode reduction is not optimal,

which is not surprising as we consider a nonlinear system
and a very particular region of phase space. Further, we see
that the error curves show a very pronounced minimum after
which the approximation seemingly breaks down. The corre-
sponding time point lies well after the POD time span. These
minima correspond to the fact that after the passing of the
wave front the profile becomes flat. The approximations do
not reproduce the average value accurately, but show a spu-
rious drift. The passing of the reduced �flat� states by the
original �flat� state creates the minima in Fig. 6.

It is remarkable that our methods yield better results than
the POD within the POD time, even for the initialization.
Here it should be recalled that the POD is optimal only for
reconstructing the states used in the calculation. As stated
above, the reconstruction of the dynamics that created these
states is a different thing, as can be directly seen from our
results.

We continue our analysis of the Burgers equation by con-
sidering statistical initial conditions. In contrast to the calcu-
lations for the diffusion equation we have only three ran-
domly sampled parameters in the initial condition. It is given
by a peak of various height H, width W, and position X. In
particular it is defined by the following equation:

��t = 0,xi� = He−50W�xi − X�2
. �32�

Here, H and W are normally distributed whereas X is uni-
formly distributed.

The results are shown in Fig. 8. For all methods the error
reaches a plateau very quickly. The performance of the full
system POD is slightly better than that of the DMRG POD.
However, the errors from our approach are of the same order
as from the full POD and one magnitude better than that of
the Fourier mode-based reduction. Also the iteration brings
an improvement which reaches saturation already after the
first step.

For deterministic initial conditions the evolution of the
error is not monotonic in contrast to the case of statistical
initial conditions. This is due to the fact that deterministic
initial conditions can be considered more effectively by the
POD. The statistical initial conditions were drawn from a
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FIG. 5. �Color online� Reduced diffusion equation L2-error E�t�,
identical statistical initialization. The error is expressed in units of
�, for the time axis arbitrary units are employed. Note that for
clarity not all data points are shown as symbols.
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FIG. 6. �Color online� Reduced Burgers equation L2-error E�t�,
deterministic initial conditions, N=40, ht=0.02, d=0.01, and �
=0.1. The error is expressed in units of �; for the time axis arbi-
trary units are employed. Note that for clarity not all data points are
shown as symbols.
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FIG. 7. �Color online� Reduced Burgers equation L2-error E�t�,
deterministic initial conditions, N=100, ht=0.005, d=0.01, and �
=0.1. The inset shows the begin of the error evolution enlarged. The
error is expressed in units of �; for the time axis arbitrary units are
employed. Note that for clarity not all data points are shown as
symbols.
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three-, see Eq. �32�, or two-, see Eq. �33�, dimensional sub-
space which is reproduced poorly by a reduction to a four-
dimensional space, which has to consider the time evolution
also.

C. Nonlinear diffusion

This system is defined by Eq. �11�. As initial conditions
we have chosen a front with uniformly distributed position X
and normally distributed height H,

��t = 0,xi� =
H

2
tanh��xi − X�10� . �33�

Under these conditions all methods were able to reproduce
the dynamics well, see Fig. 9. Surprisingly the full POD
method gave poorer results than even the Fourier mode-
based reduction. This is to a lower extent also true for the
initialization run of the DMRG POD. The iteration led to an
improvement although the second iteration gave similar re-
sults as the initialization. Further iterations again increase the
accuracy, so no general statement can be made. After a fast
saturation by applying the iteration procedure we observed
repeatedly a decay in the quality of the results, which we
attribute to the accumulation of numerical errors.

VI. DISCUSSION

A. Computational load

For all calculation steps, e.g., diagonalization, Gram-
Schmidt orthonormalization, etc., standard algorithms were
applied �6,21�. The focus was more on a concise assessment
of the new algorithm instead of an optimal solution of the toy
problems. For the diagonalization of the covariance matrix,
e.g., first a Householder tridiagonalization was performed
�21�, which is an O�N3� algorithm. The calculation of the
POD, either for the complete system or for the superblock
system, was performed with the same routine. This com-
prised the simulation as well as the diagonalization.

For a POD the simulation of the system in the time span
of interest is additionally necessary. The required computa-
tional load for this simulation is implementation dependent
and is denoted with S�·�. Within our approach the simulation
and diagonalization is performed only on the superblock sys-
tem. Comparing the results from Figs. 6 and 7 suggests that
the necessary number of iterations �sweeps� does not depend
on the full system size N. If we denote the superblock size
with M and the number of iterations with Ni, a naive estima-
tion of the computational load is given in Table I.

For a more quantitative analysis we have measured the
time necessary to perform a full POD comprised of simula-
tion and diagonalization. Then we did the same for the ini-
tialization of the DMRG POD algorithm including all simu-
lation and diagonalization steps until the superblock system
described the full system of dimensionality N, compare Fig.
2, and a first reduced basis had been calculated. We also
measured the computing time for one further iteration step in
the same way as for the initialization. The computing time is
constant for all iteration steps so further data were extrapo-
lated. The underlying equation was the deterministic initial-
ized Burgers equation although the choice for an equation
affects the computational load only marginally. As param-
eters we have chosen ht=0.005, d=0.01, and �=0.1. Figure
10 shows a logarithmic plot of the results. The DMRG POD
approach shows a lower amount of computer time for the
initialization step. For higher system size this holds also for
the iterations. Generally the scaling with N is favorable. Note
that here only the DMRG method should be assessed. For
this purpose public assessable standard algorithms are suffi-
cient, although much more effective methods could be pos-
sible. All calculations were performed on an Intel Dual Core
machine, using a single CPU.

B. Stability

Many numerical schemes and the explicit Euler method in
particular show instabilities for certain parameter ranges. For
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FIG. 8. �Color online� Reduced Burgers equation L2-error E�t�,
statistical initial conditions, N=20, ht=0.01, d=0.05, and �=0.1.
The error is expressed in units of �; for the time axis arbitrary units
are employed. Note that for clarity not all data points are shown as
symbols.
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FIG. 9. �Color online� Reduced nonlinear diffusion equation
L2-error E�t�, statistical initial conditions, N=30, ht=0.03, d=0.01,
and a=0.5. The error is expressed in units of �; for the time axis
arbitrary units are employed. Note that for clarity not all data points
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TABLE I. Naive estimation of the computational load with full
system size N, superblock size M, and numbers of iterations Ni. The
computational load for the simulation is denoted with S�·�

Full system POD DMRG POD

O�N3�+S�N� NNiO�M�+S�M�
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the explicit Euler method the stability condition is

�1 + �ht� � 1, �34�

where � is the largest eigenvalue of the generator of evolu-
tion and ht the size of the time step. For the Laplace operator
the highest frequency component is the first to become
unstable while increasing ht. The eigenvalue is
−4
�x2 sin2� 
�N−1�

N
�
 −4

��x�2 . Consequently, we should have ht

�
��x�2

2d , d being the diffusion constant. We have performed
calculation directly at this limit, see Fig. 11, and have seen
no signs of instability. Although the nonlinear Burgers equa-
tion was considered, the previous point holds, since the sym-
metric derivative operator has no nonzero real part eigenval-
ues. By increasing ht the instability appears for all methods.
These calculations were only first tests and further work is
required. However, it can be assumed that in the DMRG
POD calculation the instability originates only from the
newly inserted nodes which correspond to the highest spatial
resolution. Combined implicit-explicit methods �22� could be
used to solve this problem.

C. Interpretation of the algorithm

The various steps, necessary for a DMRG version of the
proper orthogonal decomposition, seem to be complex on the
first glance. It is also not clear why this approach should be
effective. We now shortly depict the basic idea behind this
algorithm.

The DMRG algorithm decomposes the spatial domain but
considers an interaction of the domains due to the superblock
concept. The single blocks, together with information about
interaction with neighboring blocks and the reduced opera-
tors, describe spatial regions with a higher number of nodes
than the number of DOFs actually retained in the block. In-
serting nodes described by the full �yet already discretized�
dynamics corresponds to increasing the spatial resolution lo-
cally. The surrounding blocks simulate the environment for a
small subsystem with correct dynamics. In the DMRG POD
algorithm now the area with high resolution is moved
through the system. Thereby the parameters of the super-
block system, i.e., the block basis and operator matrix ele-
ments, are adapted to approximate the full system. For more
graphical illustration, see Fig. 12. These arguments are a bit
heuristic, but until now no rigorous proof for the algorithm
has been given.

VII. CONCLUSION AND OUTLOOK

To summarize, we have given a demonstration of appli-
cability for an algorithm to calculate an approximate POD
without ever simulating the full system. Our approach also
makes practically no assumption on the equations that define
the dynamics. The approach has been tested for linear sys-
tems where its performance was even higher than the full
system POD results but considerably worse than the optimal
reduction. Several nonlinear systems have been considered.
For the Burgers equation the results of the full POD and our
algorithm were comparable and significantly better than a
Fourier mode based reduction.

Further work on this topic will include extensions to
higher dimensional systems. A method for two and three di-
mensions is currently in progress. Further, driven systems
and systems with noise shall be implemented. A closer analy-
sis of the quality of the approximations as well as the limi-
tations of the method has to be performed. We have access to
the amount of discarded information from the discarded ei-
genvalues in the truncations as well as in the POD steps. This
suggests an adaptive approach for the reduction.
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APPENDIX

For completeness, we assess in the following the error of
the reduced evolution for the linear case. For the optimal
reduction we require a minimal L2-error for the reduced field
with respect to the unreduced evolution. The full time evo-
lution in the N-dimensional phase space is generated by L as

��t� = e�t−t0�L��t0� . �A1�

The explicit Euler algorithm approximates this by

��t� 
 �1 + htL���t0� . �A2�

We assume that all eigenvalues of L are negative or zero. A
positive eigenvalue would lead to an unbounded exponential
growth in Eq. �A1� which is unphysical. Considering only
linear projections the reduction is defined by the operator P
which is the orthogonal projection to the relevant subspace
Range�P�. P can be constructed from an ONB of this space.
Equivalently, it can be defined via the ONB �namely C� of
Kern�P� so that P=1−CC†.

The reduced time evolution becomes

�̂�t� = e�t−t0�PLPP��t0� = e�t−t0�L̂�̂�t0� , �A3�

since after each �infinitesimal� time step the components
within the irrelevant subspace, i.e., Kern�P�, are projected

out. For a general P the eigenvectors of L̂ are not the same as

for L, but known eigenvectors of L̂ are always the column
vectors of C.

1. Long time optimized projection

If we assume that the eigenvalues of L are �0, for long

times t�1 the time evolution operators etL̂, etL become the

projectors onto the kernels of L or L̂, respectively. In the
eigenbasis �i

eig it is simply

�i
eigetL� j

eig = �ije
t�i. �A4�

The product of the reduced evolution operator etPLP and
P converges for long times to the projector onto
Kern�PLP��Range�P�. More explicitly this is

lim
t→�

etL = �1�Kern�L�, �A5�

lim
t→�

etPLP = �1�Kern�PLP�. �A6�

This gives for the error

E� = lim
t→�

E��t� = �1�Kern�L� − 1�Kern�PLP�P���t0� . �A7�

In the long time limit we can obtain a zero error for all initial
conditions if we have

Kern�PLP� � Range�P� � Kern�L� . �A8�

This is achieved by requiring

Kern�L� � Range�P� , �A9�

and

Range�P� L invariant, �A10�

as we show now.
Consider a 	�Range�P�. Then P	=	 and due to the L

invariance of Range�P� it is L	�Range�P� resulting in
PLP	= PL	=L	. This gives for P with Range�P� being L
invariant,

Kern�PLP� � Range�P� = Kern�L� � Range�P� .

�A11�

Equation �A8� can be retrieved from Eq. �A11� just by re-
quiring condition �A9�. Thus, in the long time limit Eq. �A7�
becomes identically zero.

2. Short time optimized projection

For short times we consider here the reduction from an
N-dimensional to an �N−1�-dimensional system. For further
reductions the results can be applied by iteration. The pro-
jector P becomes then Pij =1ij −cicj, where c is the removed
state. In order to minimize the error for the short time evo-
lution measured by the L2 norm we have to minimize

Es�t� = 	etL	 − ePLPP		2 
 	�1 + tL − P − PLP�		2 = 	E		2.

�A12�

Here we have already used an expansion in powers of t and
truncated after the first order terms.

Since we have no information on 	, we minimize Eq.
�A12� by using the Frobenius norm � · �F of the error operator
E. The Frobenius norm is consistent with the L2 norm �21�,
i.e.,

	Ax	2 � �A�F	x	2 ∀ A � Rn�n, x � Rn. �A13�

By inserting P=1−C we obtain for the error operator

E = 1 − P + t�L − �1 − C�L�1 − C��

= C + t�L − L + LC + CL − CLC�

= C + t�LC + CL − CLC� . �A14�

We assume L to be symmetric, i.e., Lij =Lji. Thus L has an
orthonormal eigenbasis ��i���=1. . .N where the columns are
the eigenvectors of L. The eigenvalues are �� and the matrix
elements of the error operator E are decomposed in this basis
as

Eij = �
��

��iE����i

= Cij + t�
n
�LinCnj + CinLnj − �

m

CinLnmCmj�
�A15�

with
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Cij = �
��

��ic�c���j , �A16�

�
mn

CinLnmCmj = �
��nm

��ic�cnLnmcmc���j , �A17�

�
n

LinCnj = �
��n

��nLinc�c���j , �A18�

�
n

CinLnj = �
��n

��ic�c�Lnj��n. �A19�

We use the orthogonality of the ��, i.e.,

�
i

��i��i = ��� = �
i

�i��i�. �A20�

In the eigenbasis the removed degree of freedom c can be
written as c̃ with components

c̃i = �
�

��ic�, c� = �
i�

��i��ic� = �
i

��ic̃i. �A21�

The average of L in the removed state c, is


L�c ª �
nm

cnLnmcm

= �
nmij

�nic̃iLnm�mjc̃j

= �
nij

�nic̃i� j�njc̃j

= �
i

c̃i
2�i. �A22�

The matrix elements from Eqs. �A16�–�A19� become

Cij = c̃ic̃ j , �A23�

�
mn

CinLnmCmj = c̃i
L�cc̃j , �A24�

�
n

LinCnj = �
�n

��iL�ncnc̃j = �
n

�i�nicnc̃j = �ic̃ic̃ j ,

�A25�

�
n

CinLnj = �
n

c̃icn� j�nj = c̃ic̃ j� j . �A26�

Thus for the matrix elements of the error operator we obtain

Eij = c̃ic̃ j�1 + t��i + � j − 
L�c�� . �A27�

We minimize the Frobenius norm of E given by

�E�F = �
ij

�Eij�2 = �
ij

c̃i
2c̃j

2�1 + t��i + � j − 
L�c��2 �A28�

for a normalized c, i.e.,

1 = 	c	2
2 = �

i

ci
2 = �

i

c̃i
2. �A29�

Since E is a linear operator it follows that 	Ex	2= 	x	2	Ex̂	2
with x= x̂	x	2. Without no restriction to 	x	2 the zero vector
would always minimize 	Ex	2. Furthermore, each lower
bound K for 	x	2 will lead to the same x̂ with 	x̂	2=K. This is
not true for the general nonlinear case as in �23�.

Incorporating this condition �E�F reduces to

�E�F
2 = 1 + 2t
L�c + 2t
L�c − 2t
L�c + t2
L�c

2

+ 2t2
L�c
2 − 2t2
L�c

2 + t2
L�c
2 − 2t2
L�c

2 + t2
L�c
2

= 1 + 2t
L�c + t2
L�c
2

= �1 + t
L�c�2 ⇒ �E�F
= �1 + t
L�c� . �A30�

Consequently, in order to minimize �E�F we have to minimize

L�c.

The minimization itself is performed using Lagrangian
multipliers for the constraint Eq. �A29�. The necessary con-
dition for a minimum is

0 =
�

�c̃k

�
L�c + ��1 − 	c	2
2��

=
�

�c̃k
�

i

�c̃i
2�i + ��1 − c̃i

2��

= 2c̃k��k − �� . �A31�

This is true if either c̃k=0 or �=�k. The last equation can
only be true for a single value of �k. We denote the nonzero
component as c̃k��0 and c̃k=�kk�c̃k�. From Eq. �A29� it fol-
lows further that c̃k=�kk�.

Inserting this in Eq. �A30� we obtain

�E�F = �1 + t�
k

c̃k
2�k� = �1 + t�k�� . �A32�

For small t, i.e., t� ��i�−1 ∀ i this is clearly minimal if we
choose �k� to be the smallest eigenvalue.

Further iterations, e.g., n times, of selecting the irrelevant
states remove successively the eigenstates corresponding to
the n lowest eigenvalues. This is due to the fact that the
spaces Kern�C��Range�P� and Range�C��Kern�P� are by
construction L invariant. This also makes the iteration unam-
biguous, a feature that is in general not present for nonlinear
problems.

Note also that since �i�0 the reduced states always be-
long to Range�L� as long as any remaining eigenvalue, i.e.,
an eigenvalue of Pn−1LPn−1, is nonzero. Here, Pn−1 results
from the previous reduction step. In this case the error al-
ways vanishes for long times.

Summarizing, the optimal short time projection leads to
results that are not only consistent with the long time accu-
racy requirements, but even include them.
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